COMING TO TERMS WITH PID, 18PaperCon
Despite being ubiquitous in industrial control system usage, the PID (Proportional, Integral, Derivative) algorithm is a mystery to many. Since its theoretical analysis was introduced by Minorsky nearly 100 years ago [1], it has been explained primarily by its representation in the Positional form of the equation. This paper will present the PID algorithm as a PVA (Position, Velocity, Acceleration) algorithm, which explains the theory based on the Velocity instead of the Positional form of the equation. PVA is not a new controller but a different representation of the PID from a Velocity instead of Positional view. The paper does not intend to suggest that the implementation of controllers should change from PID to PVA; only that PVA provides a more intuitive way to introduce the theory so that engineers better understand how to configure and tune PID control loops. Despite a long history of teaching the Positional form, and implementation of the Positional (PID) form in control systems, the Velocity (PVA) form offers a way to introduce the algorithm in a more familiar and understandable way to engineering students and practicing engineers.
TAPPI conference proceedings and presentations, technical papers, and publication articles provide technical and management data and solutions on topics covering the Pulp, Paper, Tissue, Corrugated Packaging, Flexible Packaging, Nanotechnology and Converting Industries.
Simply select the quantity, add to your cart and your conference paper, presentation or article will be available for immediate download.