Boosting the elongation potential of paper by mechanical refining and additives, TAPPI JOURNAL September 2018



ABSTRACT: The procedures used in restraining the web during drying will severely affect paper properties. In this work, the main differences between restrained drying and unrestrained drying on paper properties were identified. The mechanical properties of paper were studied as a function of low-consistency mechanical refining energy; wet-end additions of carboxymethyl cellulose (CMC) with cationic starches; as well as spray addition of alginate, chiosan, and cationic guar gum. After restrained drying, the tensile index and tensile stiffness increased with increasing refining energy, but the elongation at break was severely limited. After unrestrained drying, the elongation at break increased linearly with increasing refining energy. However, unrestrained drying also resulted in significantly lower tensile index and tensile stiffness values. After restrained drying, the largest increases in tensile index and Stiffness were obtained by sequential wet-end addition of CMC and cationic starches. Certain combinations could mitigate all of the decrease in tensile index from unrestrained drying, while maintaining the distinctively high elongation potential of the paper. Wet-end addition of CMC and cationic starches could mitigate some of the decrease in Tensile stiffness, but not completely. Spray addition of alginate, chitosan, or cationic guar gum increased the tensile Index after both restrained and unrestrained drying. Spray addition of alginate resulted in significant increases in elongation at break and two-dimensional formability of the handsheets after unrestrained drying. After restrained drying, the tensile stiffness increased after spray addition of all of the different polysaccharides. After unrestrained drying, however, stiffness was unaffected by all of the tested polysaccharide spray additions. The same pulp treatment/additives will increase either stiffness or stretch, depending on the drying technique, but both properties could not be maximized simultaneously.

Application: Increased elongation of paper could lead to new packaging products. Altering the drying technique increases elongation but also affects other paper properties. Mills can benefit from understanding the effects of different treatments after unrestrained and restrained drying. 

TAPPI conference proceedings and presentations, technical papers, and publication articles provide technical and management data and solutions on topics covering the Pulp, Paper, Tissue, Corrugated Packaging, Flexible Packaging, Nanotechnology and Converting Industries.

Simply select the quantity, add to your cart and your conference paper, presentation or article will be available for immediate download.
Author: A. Strand, J. Kouko, A. Oksanen, K. Salminen, A. Ketola, E. Retulainen, and A. Sundberg
Boosting the elongation potential of paper by mechanical ref
Boosting the elongation potential of paper by mechanical refining and additives, TAPPI JOURNAL September 2018
0.00

New Releases

TAPPI PRESS Catalog eBook 2024


Experience the Power of Publications in the 2024 TAPPI Press Catalog


Open


 

Kraft Recovery Boilers, Third Edition  


Sponsored by the Recovery Boiler Program R&D Subcommittee of the American Forest & Paper Association (AF&PA) and published by TAPPI Press.


Purchase


 

Handbook For Pulp and Paper Technologists (The SMOOK Book), Fourth Edition

The best-selling text to introduce the entire technology of pulp and paper manufacture.

Purchase

 

Guidelines for Safe Assessment and Operation of Yankee Dryers  


A project of the Yankee Dryer Safety & Reliability Committee.

Purchase

 

Check our newest additions.


TAPPI Press offers some of the most in-depth resources and references for the forest products and related industries. 

See More

   
 

Available for Purchase – Conference Proceedings


TAPPI maintains a record of key conference papers, presentations, and other conference publications, available for purchase in a variety of formats.

See More